
The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments

Joseph Poon

joseph@lightning.network

Thaddeus Dryja

rx@awsomnet.org

November 20, 2015
DRAFT Version 0.5.9.1

Abstract

The bitcoin protocol can encompass the global financial transac-

tion volume in all electronic payment systems today, without a single

custodial third party holding funds or requiring participants to have

anything more than a computer using a broadband connection. A

decentralized system is proposed whereby transactions are sent over

a network of micropayment channels (a.k.a. payment channels or

transaction channels) whose transfer of value occurs off-blockchain.

If Bitcoin transactions can be signed with a new sighash type that

addresses malleability, these transfers may occur between untrusted

parties along the transfer route by contracts which, in the event of un-

cooperative or hostile participants, are enforceable via broadcast over

the bitcoin blockchain in the event of uncooperative or hostile partici-

pants, through a series of decrementing timelocks.

1 The Bitcoin Blockchain Scalability Problem

The Bitcoin[1] blockchain holds great promise for distributed ledgers, but

the blockchain as a payment platform, by itself, cannot cover the world’s

commerce anytime in the near future. The blockchain is a gossip protocol

whereby all state modifications to the ledger are broadcast to all partic-

ipants. It is through this “gossip protocol” that consensus of the state,

everyone’s balances, is agreed upon. If each node in the bitcoin network

must know about every single transaction that occurs globally, that may

1

mailto:joseph@lightning.network
mailto:rx@awsomnet.org


create a significant drag on the ability of the network to encompass all

global financial transactions. It would instead be desirable to encompass all

transactions in a way that doesn’t sacrifice the decentralization and security

that the network provides.

The payment network Visa achieved 47,000 peak transactions per sec-

ond (tps) on its network during the 2013 holidays[2], and currently averages

hundreds of millions per day. Currently, Bitcoin supports less than 7 trans-

actions per second with a 1 megabyte block limit. If we use an average of 300

bytes per bitcoin transaction and assumed unlimited block sizes, an equiva-

lent capacity to peak Visa transaction volume of 47,000/tps would be nearly

8 gigabytes per Bitcoin block, every ten minutes on average. Continuously,

that would be over 400 terabytes of data per year.

Clearly, achieving Visa-like capacity on the Bitcoin network isn’t fea-

sible today. No home computer in the world can operate with that kind of

bandwidth and storage. If Bitcoin is to replace all electronic payments in

the future, and not just Visa, it would result in outright collapse of the Bit-

coin network, or at best, extreme centralization of Bitcoin nodes and miners

to the only ones who could afford it. This centralization would then defeat

aspects of network decentralization that make Bitcoin secure, as the abil-

ity for entities to validate the chain is what allows Bitcoin to ensure ledger

accuracy and security.

Having fewer validators due to larger blocks not only implies fewer

individuals ensuring ledger accuracy, but also results in fewer entities that

would be able to validate the blockchain as part of the mining process,

which results in encouraging miner centralization. Extremely large blocks,

for example in the above case of 8 gigabytes every 10 minutes on average,

would imply that only a few parties would be able to do block validation.

This creates a great possibility that entities will end up trusting centralized

parties. Having privileged, trusted parties creates a social trap whereby

the central party will not act in the interest of an individual (principal-

agent problem), e.g. rentierism by charging higher fees to mitigate the

incentive to act dishonestly. In extreme cases, this manifests as individuals

sending funds to centralized trusted custodians who have full custody of

customers’ funds. Such arrangements, as are common today, create severe

counterparty risk. A prerequisite to prevent that kind of centralization from

occurring would require the ability for bitcoin to be validated by a single

2



consumer-level computer on a home broadband connection. By ensuring

that full validation can occur cheaply, Bitcoin nodes and miners will be able

to prevent extreme centralization and trust, which ensures extremely low

transaction fees.

While it is possible that Moore’s Law will continue indefinitely, and

the computational capacity for nodes to cost-effectively compute multi-

gigabyte blocks may exist in the future, it is not a certainty.

To achieve much higher than 47,000 transactions per second using

Bitcoin requires conducting transactions off the Bitcoin blockchain itself. It

would be even better if the bitcoin network supported a near-unlimited num-

ber of transactions per second with extremely low fees for micropayments.

Many micropayments can be sent sequentially between two parties to en-

able any size of payments. Micropayments would enable unbunding, less

trust and commodification of services, such as payments for per-megabyte

internet service. To be able to achieve these micropayment use cases, how-

ever, would require severely reducing the amount of transactions that end

up being broadcast on the global Bitcoin blockchain.

While it is possible to scale at a small level, it is absolutely not possible

to handle a large amount of micropayments on the network or to encompass

all global transactions. For bitcoin to succeed, it requires confidence that if

it were to become extremely popular, its current advantages stemming from

decentralization will continue to exist. In order for people today to believe

that Bitcoin will work tomorrow, Bitcoin needs to resolve the issue of block

size centralization effects; large blocks implicitly create trusted custodians

and significantly higher fees.

2 A Network of Micropayment Channels Can

Solve Scalability

“If a tree falls in the forest and no one is around to hear it, does

it make a sound?”

The above quote questions the relevance of unobserved events —if

nobody hears the tree fall, whether it made a sound or not is of no conse-

quence. Similarly, in the blockchain, if only two participants care about an

everyday recurring transaction, it’s not necessary for all other nodes in the

3



bitcoin network to know about that transaction. It is instead preferable to

only have the bare minimum of information on the blockchain. By defer-

ring telling the entire world about every transaction, doing net settlement

of their relationship at a later date enables Bitcoin users to conduct many

transactions without bloating up the blockchain or creating trust in a cen-

tralized counterparty. An effectively trustless structure can be achieved by

using time locks as a component to global consensus.

Currently the solution to micropayments and scalability is to offload

the transactions to a custodian, whereby one is trusting third party custodi-

ans to hold one’s coins and to update balances with other parties. Trusting

third parties to hold all of one’s funds creates counterparty risk and trans-

action costs.

Instead, using a network of these micropayment channels, Bitcoin

can scale to billions of transactions per day with the computational power

available on a modern desktop computer today. Sending many payments

inside a given micropayment channel enables one to send large amounts

of funds to another party in a decentralized manner. These channels are

not a separate trusted network on top of bitcoin. They are real bitcoin

transactions.

Micropayment channels[3][4] create a relationship between two par-

ties to perpetually update balances, deferring what is broadcast to the

blockchain in a single transaction netting out the total balance between

those two parties. This permits the financial relationships between two par-

ties to be trustlessly deferred to a later date, without risk of counterparty

default. Micropayment channels use real bitcoin transactions, only electing

to defer the broadcast to the blockchain in such a way that both parties

can guarantee their current balance on the blockchain; this is not a trusted

overlay network —payments in micropayment channels are real bitcoin com-

municated and exchanged off-chain.

2.1 Micropayment Channels Do Not Require Trust

Like the age-old question of whether the tree falling in the woods makes a

sound, if all parties agree that the tree fell at 2:45 in the afternoon, then the

tree really did fall at 2:45 in the afternoon. Similarly, if both counterparties

agree that the current balance inside a channel is 0.07 BTC to Alice and 0.03

4



BTC to Bob, then that’s the true balance. However, without cryptography,

an interesting problem is created: If one’s counterparty disagrees about the

current balance of funds (or time the tree fell), then it is one’s word against

another. Without cryptographic signatures, the blockchain will not know

who owns what.

If the balance in the channel is 0.05 BTC to Alice and 0.05 BTC to

Bob, and the balance after a transaction is 0.07 BTC to Alice and 0.03

BTC to Bob, the network needs to know which set of balances is correct.

Blockchain transactions solve this problem by using the blockchain ledger

as a timestamping system. At the same time, it is desirable to create a sys-

tem which does not actively use this timestamping system unless absolutely

necessary, as it can become costly to the network.

Instead, both parties can commit to signing a transaction and not

broadcasting this transaction. So if Alice and Bob commit funds into a 2-

of-2 multisignature address (where it requires consent from both parties to

create spends), they can agree on the current balance state. Alice and Bob

can agree to create a refund from that 2-of-2 transaction to themselves, 0.05

BTC to each. This refund is not broadcast on the blockchain. Either party

may do so, but they may elect to instead hold onto that transaction, knowing

that they are able to redeem funds whenever they feel comfortable doing so.

By deferring broadcast of this transaction, they may elect to change this

balance at a future date.

To update the balance, both parties create a new spend from the

2-of-2 multisignature address, for example 0.07 to Alice and 0.03 to Bob.

Without proper design, though, there is the timestamping problem of not

knowing which spend is correct: the new spend or the original refund.

The restriction on timestamping and dates, however, is not as com-

plex as full ordering of all transactions as in the bitcoin blockchain. In the

case of micropayment channels, only two states are required: the current

correct balance, and any old deprecated balances. There would only be a

single correct current balance, and possibly many old balances which are

deprecated.

Therefore, it is possible in bitcoin to devise a bitcoin script whereby

all old transactions are invalidated, and only the new transaction is valid.

Invalidation is enforced by a bitcoin output script and dependent trans-

actions which force the other party to give all their funds to the channel

5



counterparty. By taking all funds as a penalty to give to the other, all old

transactions are thereby invalidated.

This invalidation process can exist through a process of channel con-

sensus where if both parties agree on current ledger states (and building new

states), then the real balance gets updated. The balance is reflected on the

blockchain only when a single party disagrees. Conceptually, this system is

not an independent overlay network; it is more a deferral of state on the

current system, as the enforcement is still occurring on the blockchain itself

(albeit deferred to future dates and transactions).

2.2 A Network of Channels

Thus, micropayment channels only create a relationship between two parties.

Requiring everyone to create channels with everyone else does not solve the

scalability problem. Bitcoin scalability can be achieved using a large network

of micropayment channels.

If we presume a large network of channels on the Bitcoin blockchain,

and all Bitcoin users are participating on this graph by having at least one

channel open on the Bitcoin blockchain, it is possible to create a near-infinite

amount of transactions inside this network. The only transactions that are

broadcasted on the Bitcoin blockchain prematurely are with uncooperative

channel counterparties.

By encumbering the Bitcoin transaction outputs with a hashlock and

timelock, the channel counterparty will be unable to outright steal funds

and Bitcoins can be exchanged without outright counterparty theft. Fur-

ther, by using staggered timeouts, it’s possible to send funds via multiple

intermediaries in a network without the risk of intermediary theft of funds.

3 Bidirectional Payment Channels

Micropayment channels permit a simple deferral of a transaction state to

be broadcast at a later time. The contracts are enforced by creating a

responsibility for one party to broadcast transactions before or after certain

dates. If the blockchain is a decentralized timestamping system, it is possible

to use clocks as a component of decentralized consensus[5] to determine data

validity, as well as present states as a method to order events[6].

6



By creating timeframes where certain states can be broadcast and

later invalidated, it is possible to create complex contracts using bitcoin

transaction scripts. There has been prior work for Hub-and-Spoke Micro-

payment Channels[7][8][9] (and trusted payment channel networks[10][11])

looking at building a hub-and-spoke network today. However, Lightning

Network’s bidirectional micropayment channel requires the malleability soft-

fork described in Appendix A to enable near-infinite scalability while miti-

gating risks of intermediate node default.

By chaining together multiple micropayment channels, it is possible

to create a network of transaction paths. Paths can be routed using a BGP-

like system, and the sender may designate a particular path to the recipient.

The output scripts are encumbered by a hash, which is generated by the

recipient. By disclosing the input to that hash, the recipient’s counterparty

will be able to pull funds along the route.

3.1 The Problem of Blame in Channel Creation

In order to participate in this payment network, one must create a micro-

payment channel with another participant on this network.

3.1.1 Creating an Unsigned Funding Transaction

An initial channel Funding Transaction is created whereby one or both chan-

nel counterparties fund the inputs of this transaction. Both parties create

the inputs and outputs for this transaction but do not sign the transaction.

The output for this Funding Transaction is a single 2-of-2 multisigna-

ture script with both participants in this channel, henceforth named Alice

and Bob. Both participants do not exchange signatures for the Funding

Transaction until they have created spends from this 2-of-2 output refund-

ing the original amount back to its respective funders. The purpose of not

signing the transaction allows for one to spend from a transaction which

does not yet exist. If Alice and Bob exchange the signatures from the Fund-

ing Transaction without being able to broadcast spends from the Funding

Transaction, the funds may be locked up forever if Alice and Bob do not

cooperate (or other coin loss may occur through hostage scenarios whereby

one pays for the cooperation from the counterparty).

Alice and Bob both exchange inputs to fund the Funding Transaction

7



(to know which inputs are used to determine the total value of the channel),

and exchange one key to use to sign with later. This key is used for the

2-of-2 output for the Funding Transaction; both signatures are needed to

spend from the Funding Transaction, in other words, both Alice and Bob

need to agree to spend from the Funding Transaction.

3.1.2 Spending from an Unsigned Transaction

The Lightning Network uses a SIGHASH NOINPUT transaction to

spend from this 2-of-2 Funding Transaction output, as it is necessary to

spend from a transaction for which the signatures are not yet exchanged.

SIGHASH NOINPUT, implemented using a soft-fork, ensures transactions

can be spent from before it is signed by all parties, as transactions would

need to be signed to get a transaction ID without new sighash flags.

Without SIGHASH NOINPUT, Bitcoin transactions cannot be spent from

before they may be broadcast —it’s as if one could not draft a contract

without paying the other party first. SIGHASH NOINPUT resolves this

problem. See Appendix A for more information and implementation.

Without SIGHASH NOINPUT, it is not possible to generate a spend

from a transaction without exchanging signatures, since spending the Fund-

ing Transaction requires a transaction ID as part of the signature in the

child’s input. A component of the Transaction ID is the parent’s (Funding

Transaction’s) signature, so both parties need to exchange their signatures of

the parent transaction before the child can be spent. Since one or both par-

ties must know the parent’s signatures to spend from it, that means one or

both parties are able to broadcast the parent (Funding Transaction) before

the child even exists. SIGHASH NOINPUT gets around this by permitting

the child to spend without signing the input. With SIGHASH NOINPUT,

the order of operations are to:

1. Create the parent (Funding Transaction)

2. Create the children (Commitment Transactions and all spends from

the commitment transactions)

3. Sign the children

4. Exchange the signatures for the children

8



5. Sign the parent

6. Exchange the signatures for the parent

7. Broadcast the parent on the blockchain

One is not able to broadcast the parent (Step 7) until Step 6 is com-

plete. Both parties have not given their signature to spend from the Funding

Transaction until step 6. Further, if one party fails during Step 6, the parent

can either be spent to become the parent transaction or the inputs to the

parent transaction can be double-spent (so that this entire transaction path

is invalidated).

3.1.3 Commitment Transactions: Unenforcible Construction

After the unsigned (and unbroadcasted) Funding Transaction has been cre-

ated, both parties sign and exchange an initial Commitment Transaction.

These Commitment Transactions spends from the 2-of-2 output of the Fund-

ing Transaction (parent). However, only the Funding Transaction is broad-

cast on the blockchain.

Since the Funding Transaction has already entered into the

blockchain, and the output is a 2-of-2 multisignature transaction which

requires the agreement of both parties to spend from, Commitment Trans-

actions are used to express the present balance. If only one 2-of-2 signed

Commitment Transaction is exchanged between both parties, then both

parties will be sure that they are able to get their money back after the

Funding Transaction enters the blockchain. Both parties do not broadcast

the Commitment Transactions onto the blockchain until they want to close

out the current balance in the channel. They do so by broadcasting the

present Commitment Transaction.

Commitment Transactions pay out the respective current balances to

each party. A naive (broken) implementation would construct an unbroad-

casted transaction whereby there is a 2-of-2 spend from a single transaction

which have two outputs that return all current balances to both channel

counterparties. This will return all funds to the original party when creat-

ing an initial Commitment Transaction.

9



Figure 1: A naive broken funding transaction is described in this diagram. The Funding

Transaction (F), designated in green, is broadcast on the blockchain after all other trans-

actions are signed. All other transactions spending from the funding transactions are not

yet broadcast, in case the counterparties wish to update their balance. Only the Funding

Transaction is broadcast on the blockchain at this time.

For instance, if Alice and Bob agree to create a Funding Transac-

tion with a single 2-of-2 output worth 1.0 BTC (with 0.5 BTC contribution

from each), they create a Commitment Transaction where there are two 0.5

BTC outputs for Alice and Bob. The Commitment Transactions are signed

first and keys are exchanged so either is able to broadcast the Commitment

Transaction at any time contingent upon the Funding Transaction enter-

ing into the blockchain. At this point, the Funding Transaction signatures

can safely be exchanged, as either party is able to redeem their funds by

broadcasting the Commitment Transaction.

This construction breaks, however, when one wishes to update the

present balance. In order to update the balance, they must update their

Commitment Transaction output values (the Funding Transaction has al-

ready entered into the blockchain and cannot be changed).

When both parties agree to a new Commitment Transaction and ex-

change signatures for the new Commitment Transaction, either Commit-

ment Transactions can be broadcast. As the output from the Funding

Transaction can only be redeemed once, only one of those transactions will

be valid. For instance, if Alice and Bob agree that the balance of the channel

10



is now 0.4 to Alice and 0.6 to Bob, and a new Commitment Transaction is

created to reflect that, either Commitment Transaction can be broadcast.

In effect, one would be unable to restrict which Commitment Transaction is

broadcast, since both parties have signed and exchanged the signatures for

either balance to be broadcast.

Figure 2: Either of the Commitment Transactions can be broadcast any any time by

either party, only one will successfully spend from the single Funding Transaction. This

cannot work because one party will not want to broadcast the most recent transaction.

Since either party may broadcast the Commitment Transaction at any

time, the result would be after the new Commitment Transaction is gener-

ated, the one who receives less funds has significant incentive to broadcast

the transaction which has greater values for themselves in the Commitment

Transaction outputs. As a result, the channel would be immediately closed

and funds stolen. Therefore, one cannot create payment channels under this

model.

3.1.4 Commitment Transactions: Ascribing Blame

Since any signed Commitment Transaction may be broadcast on the

blockchain, and only one can be successfully broadcast, it is necessary

to prevent old Commitment Transactions from being broadcast. It is

not possible to revoke tens of thousands of transactions in Bitcoin, so an

alternate method is necessary. Instead of active revocation enforced by

the blockchain, it’s necessary to construct the channel itself in similar

manner to a Fidelity Bond, whereby both parties make commitments, and

11



violations of these commitments are enforced by penalties. If one party

violates their agreement, then they will lose all the money in the channel.

For this payment channel, the contract terms are that both parties

commit to broadcasting only the most recent transaction. Any broadcast of

older transactions will cause a violation of the contract, and all funds are

given to the other party as a penalty.

This can only be enforced if one is able to ascribe blame for broad-

casting an old transaction. In order to do so, one must be able to uniquely

identify who broadcast an older transaction. This can be done if each coun-

terparty has a uniquely identifiable Commitment Transaction. Both parties

must sign the inputs to the Commitment Transaction which the other party

is responsible for broadcasting. Since one has a version of the Commitment

Transaction that is signed by the other party, one can only broadcast one’s

own version of the Commitment Transaction.

For the Lightning Network, all spends from the Funding Transaction

output, Commitment Transactions, have two half-signed transactions. One

Commitment Transaction in which Alice signs and gives to Bob (C1b), and

another which Bob signs and gives to Alice (C1a). These two Commitment

Transactions spend from the same output (Funding Transaction), and have

different contents; only one can be broadcast on the blockchain, as both

pairs of Commitment Transactions spend from the same Funding Transac-

tion. Either party may broadcast their received Commitment Transaction

by signing their version and including the counterparty’s signature. For ex-

ample, Bob can broadcast Commitment C1b, since he has already received

the signature for C1b from Alice —he includes Alice’s signature and signs

C1b himself. The transaction will be a valid spend from the Funding Trans-

action’s 2-of-2 output requiring both Alice and Bob’s signature.

12



Figure 3: Purple boxes are unbroadcasted transactions which only Alice can broadcast.

Blue boxes are unbroadcasted transaction which only Bob can broadcast. Alice can only

broadcast Commitment 1a, Bob can only broadcast Commitment 1b. Only one Commit-

ment Transaction can be spent from the Funding Transaction output. Blame is ascribed,

but either one can still be spent with no penalty.

However, even with this construction, one has only merely allocated

blame. It is not yet possible to enforce this contract on the Bitcoin

blockchain. Bob still trusts Alice not to broadcast an old Commitment

Transaction. At this time, he is only able to prove that Alice has done so

via a half-signed transaction proof.

3.2 Creating a Channel with Contract Revocation

To be able to actually enforce the terms of the contract, it’s necessary to

construct a Commitment Transaction (along with its spends) where one is

able to revoke a transaction. This revocation is achievable by using data

about when a transaction enters into a blockchain and using the maturity

of the transaction to determine validation paths.

3.3 Sequence Number Maturity

Mark Freidenbach has proposed that Sequence Numbers can be en-

forcible via a relative block maturity of the parent transaction via a

soft-fork[12]. This would allow some basic ability to ensure some form

of relative block confirmation time lock on the spending script. In addi-

13



tion, an additional opcode, OP CHECKSEQUENCEVERIFY[13] (a.k.a.

OP RELATIVECHECKLOCKTIMEVERIFY)[14], would permit further

abilities, including allowing a stop-gap solution before a more permanent

solution for resolving transaction malleability. A future version of this

paper will include proposed solutions.

To summarize, Bitcoin was released with a sequence number which

was only enforced in the mempool of unconfirmed transactions. The origi-

nal behavior permitted transaction replacement by replacing transactions in

the mempool with newer transactions if they have a higher sequence num-

ber. Due to transaction replacement rules, it is not enforced due to denial

of service attack risks. It appears as though the intended purpose of the

sequence number is to replace unbroadcasted transactions. However, this

higher sequence number replacement behavior is unenforcible. One cannot

be assured that old versions of transactions were replaced in the mempool

and a block contains the most recent version of the transaction. A way to

enforce transaction versions off-chain is via time commitments.

A Revocable Transaction spends from a unique output where the

transaction has a unique type of output script. This parent’s output has

two redemption paths where the first can be redeemed immediately, and the

second can only be redeemed if the child has a minimum number of con-

firmations between transactions. This is achieved by making the sequence

number of the child transaction require a minimum number of confirmations

from the parent. In essence, this new sequence number behavior will only

permit a spend from this output to be valid if the number of blocks between

the output and the redeeming transaction is above a specified block height.

A transaction can be revoked with this sequence number behavior by

creating a restriction with some defined number of blocks defined in the

sequence number, which will result in the spend being only valid after the

parent has entered into the blockchain for some defined number of blocks.

This creates a structure whereby the parent transaction with this output

becomes a bonded deposit, attesting that there is no revocation. A time

period exists which anyone on the blockchain can refute this attestation by

broadcasting a spend immediately after the transaction is broadcast.

If one wishes to permit revocable transactions with a 1000-

confirmation delay, the output transaction construction would remain a

2-of-2 multisig:

14



2 <Alice1> <Bob1> 2 OP CHECKMULTISIG

However, the child spending transaction would contain a nSequence

value of 1000. Since this transaction requires the signature of both coun-

terparties to be valid, both parties include the nSequence number of 1000

as part of the signature. Both parties may, at their discretion, agree to

create another transaction which supersedes that transaction without any

nSequence number.

This construction, a Revocable Sequence Maturity Contract (RSMC),

creates two paths, with very specific contract terms.

The contract terms are:

1. All parties pay into a contract with an output enforcing this contract

2. Both parties may agree to send funds to some contract, with some

waiting period (1000 confirmations in our example script). This is the

revocable output balance.

3. One or both parties may elect to not broadcast (enforce) the payouts

until some future date; either party may redeem the funds after the

waiting period at any time.

4. If neither party has broadcast this transaction (redeemed the funds),

they may revoke the above payouts if and only if both parties agree to

do so by placing in a new payout term in a superseding transaction pay-

out. The new transaction payout can be immediately redeemed after

the contract is disclosed to the world (broadcast on the blockchain).

5. In the event that the contract is disclosed and the new payout structure

is not redeemed, the prior revoked payout terms may be redeemed by

either party (so it is the responsibility of either party to enforce the

new terms).

The pre-signed child transaction can be redeemed after the parent

transaction has entered into the blockchain with 1000 confirmations, due to

the child’s nSequence number on the input spending the parent.

In order to revoke this signed child transaction, both parties just agree

to create another child transaction with the default field of the nSequence

number of MAX INT, which has special behavior permitting spending at

any time.

15



This new signed spend supersedes the revocable spend so long as the

new signed spend enters into the blockchain within 1000 confirmations of

the parent transaction entering into the blockchain. In effect, if Alice and

Bob agree to monitor the blockchain for incorrect broadcast of Commitment

Transactions, the moment the transaction gets broadcast, they are able to

spend using the superseding transaction immediately. In order to broadcast

the revocable spend (deprecated transaction), which spends from the same

output as the superseding transaction, they must wait 1000 confirmations.

So long as both parties watch the blockchain, the revocable spend will never

enter into the transaction if either party prefers the superseding transaction.

Using this construction, anyone could create a transaction, not broad-

cast the transaction, and then later create incentives to not ever broadcast

that transaction in the future via penalties. This permits participants on the

Bitcoin network to defer many transactions from ever hitting the blockchain.

3.3.1 Timestop

To mitigate a flood of transactions by a malicious attacker requires a credible

threat that the attack will fail.

Greg Maxwell proposed using a timestop to mitigate a malicious flood

on the blockchain:

There are many ways to address this [flood risk] which haven’t

been adequately explored yet —for example, the clock can stop

when blocks are full; turning the security risk into more hold-up

delay in the event of a dos attack.[15]

This can be mitigated by allowing the miner to specify whether the

current (fee paid) mempool is presently being flooded with transactions.

They can enter a “1” value into the last bit in the version number of the block

header. If the last bit in the block header contains a “1”, then that block will

not count towards the relative height maturity for the nSequence value and

the block is designated as a congested block. There is an uncongested block

height (which is always lower than the normal block height). This block

height is used for the nSequence value, which only counts block maturity

(confirmations).

A miner can elect to define the block as a congested block or not. The

default code could automatically set the congested block flag as “1” if the

16



mempool is above some size and the average fee for that set size is above

some value. However, a miner has full discretion to change the rules on

what automatically sets as a congested block, or can select to permanently

set the congestion flag to be permanently on or off. It’s expected that most

honest miners would use the default behavior defined in their miner and not

organize a 51% attack.

For example, if a parent transaction output is spent by a child with a

nSequence value of 10, one must wait 10 confirmations before the transaction

becomes valid. However, if the timestop flag has been set, the counting of

confirmations stops, even with new blocks. If 6 confirmations have elapsed

(4 more are necessary for the transaction to be valid), and the timestop

block has been set on the 7th block, that block does not count towards the

nSequence requirement of 10 confirmations; the child is still at 6 blocks for

the relative confirmation value. Functionally, this will be stored as some

kind of auxiliary timestop block height which is used only for tracking the

timestop value. When the timestop bit is set, all transactions using an nSe-

quence value will stop counting until the timestop bit has been unset. This

gives sufficient time and block-space for transactions at the current auxil-

iary timestop block height to enter into the blockchain, which can prevent

systemic attackers from successfully attacking the system.

However, this requires some kind of flag in the block to designate

whether it is a timestop block. For full SPV compatibility (Simple Payment

Verification; lightweight clients), it is desirable for this to be within the 80-

byte block header instead of in the coinbase. There are two places which

may be a good place to put in this flag in the block header: in the block

time and in the block version. The block time may not be safe due to the

last bits being used as an entropy source for some ASIC miners, therefore

a bit may need to be consumed for timestop flags. Another option would

be to hardcode timestop activation as a hard consensus rule (e.g. via block

size), however this may make things less flexible. By setting sane defaults

for timestop rules, these rules can be changed without consensus soft-forks.

If the block version is used as a flag, the contextual information must

match the Chain ID used in some merge-mined coins.

17



3.3.2 Revocable Commitment Transactions

By combining the ascribing of blame as well as the revocable transaction,

one is able to determine when a party is not abiding by the terms of the

contract, and enforce penalties without trusting the counterparty.

Figure 4: The Funding Transaction F, designated in green, is broadcast on the blockchain

after all other transactions are signed. All transactions which only Alice can broadcast are

in purple. All transactions which only Bob can broadcast is are blue. Only the Funding

Transaction is broadcast on the blockchain at this time.

The intent of creating a new Commitment Transaction is to invalidate

all old Commitment Transactions when updating the new balance with a

new Commitment Transaction. Invalidation of old transactions can happen

by making an output be a Revocable Sequence Maturity Contract (RSMC).

To invalidate a transaction, a superseding transaction will be signed and

exchanged by both parties that gives all funds to the counterparty in the

event an older transaction is incorrectly broadcast. The incorrect broadcast

18



is identified by creating two different Commitment Transactions with the

same final balance outputs, however the payment to oneself is encumbered

by an RSMC.

In effect, there are two Commitment Transactions from a single Fund-

ing Transaction 2-of-2 outputs. Of these two Commitment Transactions,

only one can enter into the blockchain. Each party within a channel has one

version of this contract. So if this is the first Commitment Transaction pair,

Alice’s Commitment Transaction is defined as C1a, and Bob’s Commitment

Transaction is defined as C1b. By broadcasting a Commitment Transac-

tion, one is requesting for the channel to close out and end. The first two

outputs for the Commitment Transaction include a Delivery Transaction

(payout) of the present unallocated balance to the channel counterparties.

If Alice broadcasts C1a, one of the output is spendable by D1a, which sends

funds to Bob. For Bob, C1b is spendable by D1b, which sends funds to

Alice. The Delivery Transaction (D1a/D1b) is immediately redeemable and

is not encumbered in any way in the event the Commitment Transaction is

broadcast.

For each party’s Commitment Transaction, they are attesting that

they are broadcasting the most recent Commitment Transaction which they

own. Since they are attesting that this is the current balance, the balance

paid to the counterparty is assumed to be true, since one has no direct

benefit by paying some funds to the counterparty as a penalty.

The balance paid to the person who broadcast the Commitment

Transaction, however, is unverified. The participants on the blockchain

have no idea if the Commitment Transaction is the most recent or not. If

they do not broadcast their most recent version, they will be penalized by

taking all the funds in the channel and giving it to the counterparty. Since

their own funds are encumbered in their own RSMC, they will only be

able to claim their funds after some set number of confirmations after the

Commitment Transaction has been included in a block (in our example,

1000 confirmations). If they do broadcast their most recent Commitment

Transaction, there should be no revocation transaction superseding the

revocable transaction, so they will be able to receive their funds after some

set amount of time (1000 confirmations).

By knowing who broadcast the Commitment Transaction and encum-

bering one’s own payouts to be locked up for a predefined period of time,

19



both parties will be able to revoke the Commitment Transaction in the fu-

ture.

3.3.3 Redeeming Funds from the Channel: Cooperative Coun-

terparties

Either party may redeem the funds from the channel. However, the party

that broadcasts the Commitment Transaction must wait for the predefined

number of confirmations described in the RSMC. The counterparty which

did not broadcast the Commitment Transaction may redeem the funds im-

mediately.

For example, if the Funding Transaction is committed with 1 BTC

(half to each counterparty) and Bob broadcasts the most recent Commit-

ment Transaction, C1b, he must wait 1000 confirmations to receive his 0.5

BTC, while Alice can spend 0.5 BTC. For Alice, this transaction is fully

closed if Alice agrees that Bob broadcast the correct Commitment Transac-

tion (C1b).

20



Figure 5: When Bob broadcasts C1b, Alice can immediately redeem her portion. Bob

must wait 1000 confirmations. When the block is immediately broadcast, it is in this

state. Transactions in green are transactions which are committed into the blockchain.

After the Commitment Transaction has been in the blockchain for

1000 blocks, Bob can then broadcast the Revocable Delivery transaction.

He must wait 1000 blocks to prove he has not revoked this Commitment

Transaction (C1b). After 1000 blocks, the Revocable Delivery transaction

will be able to be included in a block. If a party attempt to include the

Revocable Delivery transaction in a block before 1000 confirmations, the

transaction will be invalid up until after 1000 confirmations have passed (at

which point it will become valid if the output has not yet been redeemed).

21



Figure 6: Alice agrees that Bob broadcast the correct Commitment Transaction and

1000 confirmations have passed. Bob then is able to broadcast the Revocable Delivery

(RD1b) transaction on the blockchain.

After Bob broadcasts the Revocable Delivery transaction, the channel

is fully closed for both Alice and Bob, everyone has received the funds which

they both agree are the current balance they each own in the channel.

If it was instead Alice who broadcast the Commitment Transaction

(C1a), she is the one who must wait 1000 confirmations instead of Bob.

3.3.4 Creating a new Commitment Transaction and Revoking

Prior Commitments

While each party may close out the most recent Commitment Transaction

at any time, they may also elect to create a new Commitment Transaction

and invalidate the old one.

Suppose Alice and Bob now want to update their current balances

from 0.5 BTC each refunded to 0.6 BTC for Bob and 0.4 BTC for Alice.

22



When they both agree to do so, they generate a new pair of Commitment

Transactions.

Figure 7: Four possible transactions can exist, a pair with the old commitments, and

another pair with the new commitments. Each party inside the channel can only broadcast

half of the total commitments (two each). There is no explicit enforcement preventing any

particular Commitment being broadcast other than penalty spends, as they are all valid

unbroadcasted spends. The Revocable Commitment still exists with the C1a/C1b pair,

but are not displayed for brevity.

When a new pair of Commitment Transactions (C2a/C2b) is agreed

upon, both parties will sign and exchange signatures for the new Commit-

ment Transaction, then invalidate the old Commitment Transaction. This

invalidation occurs by having both parties sign a Breach Remedy Trans-

action (BR1), which supersedes the Revocable Delivery Transaction (RD1).

Each party hands to the other a half-signed revocation (BR1) from their own

Revocable Delivery (RD1), which is a spend from the Commitment Transac-

tion. The Breach Remedy Transaction will send all coins to the counterparty

within the current balance of the channel. For example, if Alice and Bob

both generate a new pair of Commitment Transactions (C2a/C2b) and inval-

idate prior commitments (C1a/C1b), and later Bob incorrectly broadcasts

C1b on the blockchain, Alice can take all of Bob’s money from the channel.

Alice can do this because Bob has proved to Alice via penalty that he will

never broadcast C1b, since the moment he broadcasts C1b, Alice is able to

take all of Bob’s money in the channel. In effect, by constructing a Breach

23



Remedy transaction for the counterparty, one has attested that one will not

be broadcasting any prior commitments. The counterparty can accept this,

because they will get all the money in the channel when this agreement is

violated.

Figure 8: When C2a and C2b exist, both parties exchange Breach Remedy transactions.

Both parties now have explicit economic incentive to avoid broadcasting old Commitment

Transactions (C1a/C1b). If either party wishes to close out the channel, they will only use

C2a (Alice) or C2b (Bob). If Alice broadcasts C1a, all her money will go to Bob. If Bob

broadcasts C1b, all his money will go to Alice. See previous figure for C2a/C2b outputs.

Due to this fact, one will likely delete all prior Commitment Transac-

tions when a Breach Remedy Transaction has been passed to the counter-

party. If one broadcasts an incorrect (deprecated and invalidated Commit-

ment Transaction), all the money will go to one’s counterparty. For example,

if Bob broadcasts C1b, so long as Alice watches the blockchain within the

predefined number of blocks (in this case, 1000 blocks), Alice will be able

to take all the money in this channel by broadcasting RD1b. Even if the

24



present balance of the Commitment state (C2a/C2b) is 0.4 BTC to Alice

and 0.6 BTC to Bob, because Bob violated the terms of the contract, all the

money goes to Alice as a penalty. Functionally, the Revocable Transaction

acts as a proof to the blockchain that Bob has violated the terms in the

channel and this is programatically adjudicated by the blockchain.

Figure 9: Transactions in green are committed to the blockchain. Bob incorrectly broad-

casts C1b (only Bob is able to broadcast C1b/C2b). Because both agreed that the current

state is the C2a/C2b Commitment pair, and have attested to each party that old commit-

ments are invalidated via Breach Remedy Transactions, Alice is able to broadcast BR1b

and take all the money in the channel, provided she does it within 1000 blocks after C1b

is broadcast.

However, if Alice does not broadcast BR1b within 1000 blocks, Bob

may be able to steal some money, since his Revocable Delivery Transac-

tion (RD1b) becomes valid after 1000 blocks. When an incorrect Commit-

ment Transaction is broadcast, only the Breach Remedy Transaction can

be broadcast for 1000 blocks (or whatever number of confirmations both

25



parties agree to). After 1000 block confirmations, both the Breach Remedy

(BR1b) and Revocable Delivery Transactions (RD1b) are able to be broad-

cast at any time. Breach Remedy transactions only have exclusivity within

this predefined time period, and any time after of that is functionally an

expiration of the statute of limitations —according to Bitcoin blockchain

consensus, the time for dispute has ended.

For this reason, one should periodically monitor the blockchain to see

if one’s counterparty has broadcast an invalidated Commitment Transaction,

or delegate a third party to do so. A third party can be delegated by only

giving the Breach Remedy transaction to this third party. They can be

incentivized to watch the blockchain broadcast such a transaction in the

event of counterparty maliciousness by giving these third parties some fee

in the output. Since the third party is only able to take action when the

counterparty is acting maliciously, this third party does not have any power

to force close of the channel.

3.3.5 Process for Creating Revocable Commitment Transactions

To create revocable Commitment Transactions, it requires proper construc-

tion of the channel from the beginning, and only signing transactions which

may be broadcast at any time in the future, while ensuring that one will

not lose out due to uncooperative or malicious counterparties. This re-

quires determining which public key to use for new commitments, as us-

ing SIGHASH NOINPUT requires using unique keys for each Commitment

Transaction RSMC (and HTLC) output. We use P to designate pubkeys

and K to designate the corresponding private key used to sign.

When generating the first Commitment Transaction, Alice and Bob

agree to create a multisig output from a Funding Transaction with a single

multisig(PAliceF , PBobF ) output, funded with 0.5 BTC from Alice and Bob

for a total of 1 BTC. This output is a Pay to Script Hash[16] transaction,

which requires both Alice and Bob to both agree to spend from the Funding

Transaction. They do not yet make the Funding Transaction (F) spendable.

Additionally, PAliceF and PBobF are only used for the Funding Transaction,

they are not used for anything else.

Since the Delivery transaction is just a P2PKH output (bitcoin ad-

dresses beginning with 1) or P2SH transaction (commonly recognized as ad-

dresses beginning with the 3) which the counterparties designate beforehand,

26



this can be generated as an output of PAliceD and PBobD. For simplicity,

these output addresses will remain the same throughout the channel, since

its funds are fully controlled by its designated recipient after the Commit-

ment Transaction enters the blockchain. If desired, but not necessary, both

parties may update and change PAliceD and PBobD for future Commitment

Transactions.

Both parties exchange pubkeys they intend to use for the RSMC (and

HTLC described in future sections) for the Commitment Transaction. Each

set of Commitment Transactions use their own public keys and are not

ever reused. Both parties may already know all future pubkeys by using

a BIP 0032[17] HD Wallet construction by exchanging Master Public Keys

during channel construction. If they wish to generate a new Commitment

Transaction pair C2a/C2b, they use multisig(PAliceRSMC2, PBobRSMC2) for

the RSMC output.

After both parties know the output values from the Commitment

Transactions, both parties create the pair of Commitment Transactions,

e.g. C2a/C2b, but do not exchange signatures for the Commitment Trans-

actions. They both sign the Revocable Delivery transaction (RD2a/RD2b)

and exchange the signatures. Bob signs RD1a and gives it to Alice

(using KBobRSMC2), while Alice signs RD1b and gives it to Bob (using

KAliceRSMC2).

When both parties have the Revocable Delivery transaction, they ex-

change signatures for the Commitment Transactions. Bob signs C1a using

KBobF and gives it to Alice, and Alice signs C1b using KAliceF and gives it

to Bob.

At this point, the prior Commitment Transaction as well as the new

Commitment Transaction can be broadcast; both C1a/C1b and C2a/C2b

are valid. (Note that Commitments older than the prior Commitment are

invalidated via penalties.) In order to invalidate C1a and C1b, both parties

exchange Breach Remedy Transaction (BR1a/BR1b) signatures for the prior

commitment C1a/C1b. Alice sends BR1a to Bob using KAliceRSMC1, and

Bob sends BR1b to Alice using KBobRSMC1. When both Breach Remedy

signatures have been exchanged, the channel state is now at the current

Commitment C2a/C2b and the balances are now committed.

However, instead of disclosing the BR1a/BR1b signatures, it’s also

possible to just disclose the private keys to the counterparty. This is more

27



effective as described later in the key storage section. One can disclose the

private keys used in one’s own Commitment Transaction. For example, if

Bob wishes to invalidate C1b, he sends his private keys used in C1b to Alice

(he does NOT disclose his keys used in C1a, as that would permit coin

theft). Similarly, Alice discloses all her private key outputs in C1a to Bob

to invalidate C1a.

If Bob incorrectly broadcasts C1b, then because Alice has all the

private keys used in the outputs of C1b, she can take the money. However,

only Bob is able to broadcast C1b. To prevent this coin theft risk, Bob

should destroy all old Commitment Transactions.

3.4 Cooperatively Closing Out a Channel

Both parties are able to send as many payments to their counterparty as

they wish, as long as they have funds available in the channel, knowing

that in the event of disagreements they can broadcast to the blockchain the

current state at any time.

In the vast majority of cases, all the outputs from the Funding Trans-

action will never be broadcast on the blockchain. They are just there in

case the other party is non-cooperative, much like how a contract is rarely

enforced in the courts. A proven ability for the contract to be enforced in a

deterministic manner is sufficient incentive for both parties to act honestly.

When either party wishes to close out a channel cooperatively, they

will be able to do so by contacting the other party and spending from

the Funding Transaction with an output of the most current Commitment

Transaction directly with no script encumbering conditions. No further pay-

ments may occur in the channel.

28



Figure 10: If both counterparties are cooperative, they take the balances in the cur-

rent Commitment Transaction and spend from the Funding Transaction with a Exercise

Settlement Transaction (ES). If the most recent Commitment Transaction gets broadcast

instead, the payout (less fees) will be the same.

The purpose of closing out cooperatively is to reduce the number

of transactions that occur on the blockchain and both parties will be able

to receive their funds immediately (instead of one party waiting for the

Revocation Delivery transaction to become valid).

Channels may remain in perpetuity until they decide to cooperatively

close out the transaction, or when one party does not cooperate with another

and the channel gets closed out and enforced on the blockchain.

3.5 Bidirectional Channel Implications and Summary

By ensuring channels can update only with the consent of both parties, it

is possible to construct channels which perpetually exist in the blockchain.

Both parties can update the balance inside the channel with whatever output

balances they wish, so long as it’s equal or less than the total funds commit-

ted inside the Funding Transaction; balances can move in both directions.

If one party becomes malicious, either party may immediately close out the

channel and broadcast the most current state to the blockchain. By using

a fidelity bond construction (Revocable Delivery Transactions), if a party

violates the terms of the channel, the funds will be sent to the counterparty,

29



provided the proof of violation (Breach Remedy Transaction) is entered into

the blockchain in a timely manner. If both parties are cooperative, the chan-

nel can remain open indefinitely, possibly for many years.

This type of construction is only possible because adjudication occurs

programatically over the blockchain as part of the Bitcoin consensus, so

one does not need to trust the other party. As a result, one’s channel

counterparty does not possess full custody or control of the funds.

4 Hashed Timelock Contract (HTLC)

A bidirectional payment channel only permits secure transfer of funds inside

a channel. To be able to construct secure transfers using a network of

channels across multiple hops to the final destination requires an additional

construction, a Hashed Timelock Contract (HTLC).

The purpose of an HTLC is to allow for global state across multiple

nodes via hashes. This global state is ensured by time commitments and

time-based unencumbering of resources via disclosure of preimages. Trans-

actional “locking” occurs globally via commitments, at any point in time a

single participant is responsible for disclosing to the next participant whether

they have knowledge of the preimage R. This construction does not require

custodial trust in one’s channel counterparty, nor any other participant in

the network.

In order to achieve this, an HTLC must be able to create certain

transactions which are only valid after a certain date, using nLockTime, as

well as information disclosure to one’s channel counterparty. Additionally,

this data must be revocable, as one must be able to undo an HTLC.

An HTLC is also a channel contract with one’s counterparty which is

enforcible via the blockchain. The counterparties in a channel agree to the

following terms for a Hashed Timelock Contract:

1. If Bob can produce to Alice an unknown 20-byte random input data

R from a known hash H, within three days, then Alice will settle the

contract by paying Bob 0.1 BTC.

2. If three days have elapsed, then the above clause is null and void and

the clearing process is invalidated, both parties must not attempt to

settle and claim payment after three days.

30



3. Either party may (and should) pay out according to the terms of this

contract in any method of the participants choosing and close out this

contract early so long as both participants in this contract agree.

4. Violation of the above terms will incur a maximum penalty of the funds

locked up in this contract, to be paid to the non-violating counterparty

as a fidelity bond.

For clarity of examples, we use days for HTLCs and block height for

RSMCs. In reality, the HTLC should also be defined as a block height (e.g.

3 days is equivalent to 432 blocks).

In effect, one desires to construct a payment which is contingent upon

knowledge of R by the recipient within a certain timeframe. After this

timeframe, the funds are refunded back to the sender.

Similar to RSMCs, these contract terms are programatically enforced

on the Bitoin blockchain and do not require trust in the counterparty to

adhere to the contract terms, as all violations are penalized via unilaterally

enforced fidelity bonds, which are constructed using penalty transactions

spending from commitment states. If Bob knows R within three days, then

he can redeem the funds by broadcasting a transaction; Alice is unable to

withhold the funds in any way, because the script returns as valid when the

transaction is spent on the Bitcoin blockchain.

An HTLC is an additional output in a Commitment Transaction with

a unique output script:

OP IF

OP HASH160 <Hash160 (R)> OP EQUALVERIFY

2 <Alice2> <Bob2> OP CHECKMULTISIG

OP ELSE

2 <Alice1> <Bob1> OP CHECKMULTISIG

OP ENDIF

Conceptually, this script has two possible paths spending from a single

HTLC output. The first path (defined in the OP IF) sends funds to Bob if

Bob can produce R. The second path is redeemed using a 3-day timelocked

refund to Alice. The 3-day timelock is enforced using nLockTime from the

spending transaction.

31



4.1 Non-revocable HTLC Construction

Figure 11: This is a non-functional naive implementation of an HTLC. Only the HTLC

path from the Commitment Transaction is displayed. Note that there are two possible

spends from an HTLC output. If Bob can produce the preimage R within 3 days and he

can redeem path 1. After three days, Alice is able to broadcast path 2. When 3 days have

elapsed either is valid. This model, however, doesn’t work with multiple Commitment

Transactions.

If R is produced within 3 days, then Bob can redeem the funds by broadcast-

ing the “Delivery” transaction. A requirement for the “Delivery” transaction

to be valid requires R to be included with the transaction. If R is not in-

cluded, then the “Delivery” transaction is invalid. However, if 3 days have

elapsed, the funds can be sent back to Alice by broadcasting transaction

“Timeout”. When 3 days have elapsed and R has been disclosed, either

transaction may be valid.

It is within both parties individual responsibility to ensure that they

can get their transaction into the blockchain in order to ensure the balances

are correct. For Bob, in order to receive the funds, he must either broadcast

the “Delivery” transaction on the Bitcoin blockchain, or otherwise settle

with Alice (while cancelling the HTLC). For Alice, she must broadcast the

“Timeout” 3 days from now to receive the refund, or cancel the HTLC

entirely with Bob.

Yet this kind of simplistic construction has similar problems as an

32



incorrect bidirectional payment channel construction. When an old Com-

mitment Transaction gets broadcast, either party may attempt to steal funds

as both paths may be valid after the fact. For example, if R gets disclosed 1

year later, and an incorrect Commitment Transaction gets broadcast, both

paths are valid and are redeemable by either party; the contract is not yet

enforcible on the blockchain. Closing out the HTLC is absolutely necessary,

because in order for Alice to get her refund, she must terminate the contract

and receive her refund. Otherwise, when Bob discovers R after 3 days have

elapsed, he may be able to steal the funds which should be going to Alice.

With uncooperative counterparties it’s not possible to terminate an HTLC

without broadcasting it to the bitcoin blockchain as the uncooperative party

is unwilling to create a new Commitment Transaction.

4.2 Off-chain Revocable HTLC

To be able to terminate this contract off-chain without a broadcast to the

Bitcoin blockchain requires embedding RSMCs in the output, which will

have a similar construction to the bidirectional channel.

33



Figure 12: If Alice broadcasts C2a, then the left half will execute. If Bob broadcasts

C2b, then the right half will execute. Either party may broadcast their Commitment

transaction at any time. HTLC Timeout is only valid after 3 days. HTLC Executions can

only be broadcast if the preimage to the hash R is known. Prior Commitments (and their

dependent transactions) are not displayed for brevity.

Presume Alice and Bob wish to update their balance in the channel

at Commitment 1 with a balance of 0.5 to Alice and 0.5 to Bob.

Alice wishes to send 0.1 to Bob contingent upon knowledge of R within

3 days, after 3 days she wants her money back if Bob does not produce R.

The new Commitment Transaction will have a full refund of the cur-

rent balance to Alice and Bob (Outputs 0 and 1), with output 2 being the

HTLC, which describes the funds in transit. As 0.1 will be encumbered in

an HTLC, Alice’s balance is reduced to 0.4 and Bob’s remains the same at

34



0.5.

This new Commitment Transaction (C2a/C2b) will have an HTLC

output with two possible spends. Each spend is different depending on

each counterparty’s version of the Commitment Transaction. Similar to the

bidirectional payment channel, when one party broadcasts their Commit-

ment, payments to the counterparty will be assumed to be valid and not

invalidated. This can occur because when one broadcasts a Commitment

Transaction, one is attesting this is the most recent Commitment Transac-

tion. If it is the most recent, then one is also attesting that the HTLC exists

and was not invalidated before, so potential payments to one’s counterparty

should be valid.

Note that HTLC transaction names (beginning with the letter H) will

begin with the number 1, whose values do not correlate with Commitment

Transactions. This is simply the first HTLC transaction. HTLC transac-

tions may persist between Commitment Transactions. Each HTLC has 4

keys per side of the transaction (C2a and C2b) for a total of 8 keys per

counterparty.

The HTLC output in the Commitment Transaction has two sets of

keys per counterparty in the output.

For Alice’s Commitment Transaction (C2a), the HTLC output script

requires multisig(PAlice2, PBob2) encumbered by disclosure of R, as well as

multisig(PAlice1, PBob1) with no encumbering.

For Bob’s Commitment Transaction (C2b), the HTLC output script

requires multisig(PAlice6, PBob6) encumbered by disclosure of R, as well as

multisig(PAlice5, PBob5) with no encumbering.

The HTLC output states are different depending upon which Com-

mitment Transaction is broadcast.

4.2.1 HTLC when the Sender Broadcasts the Commitment

Transaction

For the sender (Alice), the “Delivery” transaction is sent as an HTLC Exe-

cution Delivery transaction (HED1a), which is not encumbered in an RSMC.

It assumes that this HTLC has never been terminated off-chain, as Alice is

attesting that the broadcasted Commitment Transaction is the most recent.

If Bob can produce the preimage R, he will be able to redeem funds from the

HTLC after the Commitment Transaction is broadcast on the blockchain.

35



This transaction consumes multisig(PAlice2, PBob2) if Alice broadcasts her

Commitment C2a. Only Bob can broadcast HED1a since only Alice gave

her signature for HED1a to Bob.

However, if 3 days have elapsed since forming the HTLC, then

Alice will be able broadcast a “Timeout” transaction, the HTLC Time-

out transaction (HT1a). This transaction is an RSMC. It consumes

the output multisig(PAlice1, PBob1) without requiring disclosure of R if

Alice broadcasts C2a. This transaction cannot enter into the blockchain

until 3 days have elapsed. The output for this transaction is an RSMC

with multisig(PAlice3, PBob3) with relative maturity of 1000 blocks, and

multisig(PAlice4, PBob4) with no requirement for confirmation maturity.

Only Alice can broadcast HT1a since only Bob gave his signature for HT1a

to Alice.

After HT1a enters into the blockchain and 1000 block confirmations

occur, an HTLC Timeout Revocable Delivery transaction (HTRD1a)

may be broadcast by Alice which consumes multisig(PAlice3, PBob3).

Only Alice can broadcast HTRD1a 1000 blocks after HT1a is broadcast

since only Bob gave his signature for HTRD1a to Alice. This trans-

action can be revocable when another transaction supersedes HTRD1a

using multisig(PAlice4, PBob4) which does not have any block maturity

requirements.

4.2.2 HTLC when the Receiver Broadcasts the Commitment

Transaction

For the potential receiver (Bob), the “Timeout” of receipt is refunded as an

HTLC Timeout Delivery transaction (HTD1b). This transaction directly

refunds the funds to the original sender (Alice) and is not encumbered in

an RSMC. It assumes that this HTLC has never been terminated off-chain,

as Bob is attesting that the broadcasted Commitment Transaction (C2b)

is the most recent. If 3 days have elapsed, Alice can broadcast HTD1b

and take the refund. This transaction consumes multisig(PAlice5, PAlice5) if

Bob broadcasts C2b. Only Alice can broadcast HTD1b since Bob gave his

signature for HTD1b to Alice.

However, if HTD1b is not broadcast (3 days have not elapsed) and

Bob knows the preimage R, then Bob will be able to broadcast the HTLC

Execution transaction (HE1b) if he can produce R. This transaction is an

36



RSMC. It consumes the output multisig(PAlice6, PBob6) and requires dis-

closure of R if Bob broadcasts C2b. The output for this transaction is an

RSMC with multisig(PAlice7, PBob7) with relative maturity of 1000 blocks,

and multisig(PAlice8, PBob8) which does not have any block maturity require-

ments. Only Bob can broadcast HE1b since only Alice gave her signature

for HE1b to Bob.

After HE1b enters into the blockchain and 1000 block confirmations

occur, an HTLC Execution Revocable Delivery transaction (HERD1b)

may be broadcast by Bob which consumes multisig(PAlice7, PBob7).

Only Bob can broadcast HERD1b 1000 blocks after HE1b is broadcast

since only Alice gave her signature for HERD1b to Bob. This trans-

action can be revocable when another transaction supersedes HERD1b

using multisig(PAlice8, PBob8) which does not have any block maturity

requirements.

4.3 HTLC Off-chain Termination

After an HTLC is constructed, to terminate an HTLC off-chain requires

both parties to agree on the state of the channel. If the recipient can prove

knowledge of R to the counterparty, the recipient is proving that they are

able to immediately close out the channel on the Bitcoin blockchain and re-

ceive the funds. At this point, if both parties wish to keep the channel open,

they should terminate the HTLC off-chain and create a new Commitment

Transaction reflecting the new balance.

37



Figure 13: Since Bob proved to Alice he knows R by telling Alice R, Alice is willing to

update the balance with a new Commitment Transaction. The payout will be the same

whether C2 or C3 is broadcast at this time.

Similarly, if the recipient is not able to prove knowledge of R by

disclosing R, both parties should agree to terminate the HTLC and create

a new Commitment Transaction with the balance in the HTLC refunded to

the sender.

If the counterparties cannot come to an agreement or become other-

wise unresponsive, they should close out the channel by broadcasting the

necessary channel transactions on the Bitcoin blockchain.

However, if they are cooperative, they can do so by first generat-

ing a new Commitment Transaction with the new balances, then inval-

idate the prior Commitment by exchanging Breach Remedy transactions

(BR2a/BR2b). Additionally, if they are terminating a particular HTLC,

they should also exchange some of their own private keys used in the HTLC

transactions.

For example, Alice wishes to terminate the HTLC, Alice will disclose

KAlice1 and KAlice4 to Bob. Correspondingly if Bob wishes to terminate the

HTLC, Bob will disclose KBob6 and KBob8 to Alice. After the private keys

are disclosed to the counterparty, if Alice broadcasts C2a, Bob will be able

to take all the funds from the HTLC immediately. If Bob broadcasts C2b,

Alice will be able to take all funds from the HTLC immediately. Note that

when an HTLC is terminated, the older Commitment Transaction must be

revoked as well.

38



Figure 14: A fully revoked Commitment Transaction and terminated HTLC. If either

party broadcasts Commitment 2, they will lose all their money to the counterparty. Other

commitments (e.g. if Commitment 3 is the current Commitment) are not displayed for

brevity.

39



Since both parties are able to prove the current state to each other,

they can come to agreement on the current balance inside the channel. Since

they may broadcast the current state on the blockchain, they are able to

come to agreement on netting out and terminating the HTLC with a new

Commitment Transaction.

4.4 HTLC Formation and Closing Order

To create a new HTLC, it is the same process as creating a new Commitment

Transaction, except the signatures for the HTLC are exchanged before the

new Commitment Transaction’s signatures.

To close out an HTLC, the process is as follows (from C2 to C3):

1. Alice signs and sends her signature for RD3b and C3b. At this point

Bob can elect to broadcast C3b or C2b (with the HTLC) with the

same payout. Bob is willing after receiving C3b to close out C2b.

2. Bob signs and sends his signature for RD3a and C3a, as well as his

private keys used for Commitment 2 and the HTLC being terminated;

he sends Alice KBobRSMC2, KBob5, and KBob8. At this point Bob

should only broadcast C3b and should not broadcast C2b as he will

lose all his money if he does so. Bob has fully revoked C2b and the

HTLC. Alice is willing after receiving C3a to close out C2b.

3. Alice signs and sends her signature for RD3b and C3b, as well as her

private keys used for Commitment 2 and the HTLC being terminated;

she sends Bob KAliceRSMC2, KBob1, and KBob4. At this point neither

party should broadcast Commitment 2, if they do so, their funds will

be going to the counterparty. The old Commitment and old HTLC

are now revoked and fully terminated. Only the new Commitment 3

remains, which does not have an HTLC.

When the HTLC has been closed, the funds are updated so that the

present balance in the channel is what would occur had the HTLC contract

been completed and broadcast on the blockchain. Instead, both parties elect

to do off-chain novation and update their payments inside the channel.

It is absolutely necessary for both parties to complete off-chain nova-

tion within their designated time window. For the receiver (Bob), he must

40



know R and update his balance with Alice within 3 days (or whatever time

was selected), else Alice will be able to redeem it within 3 days. For Alice,

very soon after her timeout becomes valid, she must novate or broadcast the

HTLC Timeout transaction. She must also novate or broadcast the HTLC

Timeout Revocable Delivery transaction as soon as it becomes valid. If the

counterparty is unwilling to novate or is stalling, then one must broadcast

the current channel state, including HTLC transactions) onto the Bitcoin

blockchain.

The amount of time flexibility with these offers to novate are depen-

dent upon one’s contingent dependencies on the hashlock R. If one estab-

lishes a contract that the HTLC must be resolved within 1 day, then if the

transaction times out Alice must resolve it by day 4 (3 days plus 1), else

Alice risks losing funds.

5 Key Storage

Keys are generated using BIP 0032 Hierarchical Deterministic Wallets[17].

Keys are pre-generated by both parties. Keys are generated in a merkle

tree and are very deep within the tree. For instance, Alice pre-generates

one million keys, each key being a child of the previous key. Alice allocates

which keys to use according to some deterministic manner. For example,

she starts with the child deepest in the tree to generate many sub-keys for

day 1. This key is used as a master key for all keys generated on day 1.

She gives Bob the address she wishes to use for the next transaction, and

discloses the private key to Bob when it becomes invalidated. When Alice

discloses to Bob all private keys derived from the day 1 master key and does

not wish to continue using that master key, she can disclose the day 1 master

key to Bob. At this point, Bob does not need to store all the keys derived

from the day 1 master key. Bob does the same for Alice and gives her his

day 1 key.

When all Day 2 private keys have been exchanged, for example by

day 5, Alice discloses her Day 2 key. Bob is able to generate the Day 1 key

from the Day 2 key, as the Day 1 key is a child of the Day 2 key as well.

If a counterparty broadcasts the wrong Commitment Transaction,

which private key to use in a transaction to recover funds can either be

brute forced, or if both parties agree, they can use the sequence id number

41



when creating the transaction to identify which sets of keys are used.

This enables participants in a channel to have prior output states

(transactions) invalidated by both parties without using much data at all.

By disclosing private keys pre-arranged in a merkle-tree, it is possible to

invalidate millions of old transactions with only a few kilobytes of data per

channel. Core channels in the Lightning Network can conduct billions of

transactions without a need for significant storage costs.

6 Blockchain Transaction Fees for Bidirectional

Channels

It is possible for each participant to generate different versions of transac-

tions to ascribe blame as to who broadcast the transaction on the blockchain.

By having knowledge of who broadcast a transaction and the ability to as-

cribe blame, a third party service can be used to hold fees in a 2-of-3 multisig

escrow. If one wishes to broadcast the transaction chain instead of agreeing

to do a Funding Close or replacement with a new Commitment Transaction,

one would communicate with the third party and broadcast the chain to the

blockchain. If the counterparty refuses the notice from the third party to

cooperate, the penalty is rewarded to the non-cooperative party. In most

instances, participants may be indifferent to the transaction fees in the event

of an uncooperative counterparty.

One should pick counterparties in the channel who will be cooperative,

but is not an absolute necessity for the system to function. Note that this

does not require trust among the rest of the network, and is only relevant

for the comparatively minor transaction fees. The less trusted party may

just be the one responsible for transaction fees.

The Lightning Network fees will likely be significantly lower than

blockchain transaction fees. The fees are largely derived from the time-value

of locking up funds for a particular route, as well as paying for the chance

of channel close on the blockchain. These should be significantly lower than

on-chain transactions, as many transactions on a Lightning Network chan-

nel can be settled into one single blockchain transaction. With a sufficiently

robust and interconnected network, the fees should asymptotically approach

negligibility for many types of transactions. With cheap fees and fast trans-

actions, it will be possible to build scalable micropayments, even amongst

42



high-frequency systems such as Internet of Things applications or per-unit

micro-billing.

7 Pay to Contract

It is possible construct a cryptographically provable “Delivery Versus Pay-

ment” contract, or pay-to-contract[18], as proof of payment. This proof can

be established as knowledge of the input R from hash(R) as payment of a

certain value. By embedding a clause into the contract between the buyer

and seller stating that knowing R is proof of funds sent, the recipient of

funds has no incentive to disclose R unless they have certainty that they

will receive payment. When the funds eventually get pulled from the buyer

by their counterparty in their micropayment channel, R is disclosed as part

of that pull of funds. One can design paper legal documents that specify

that knowledge or disclosure of R implies fulfillment of payment. The sender

can then arrange a cryptographically signed contract with knowledge of in-

puts for hashes treated as fulfillment of the paper contract before payment

occurs.

8 The Bitcoin Lightning Network

By having a micropayment channel with contracts encumbered by hashlocks

and timelocks, it is possible to clear transactions over a multi-hop payment

network using a series of decrementing timelocks without additional central

clearinghouses.

Traditionally, financial markets clear transactions by transferring the

obligation for delivery at a central point and settle by transferring ownership

through this central hub. Bank wire and fund transfer systems (such as ACH

and the Visa card network), or equities clearinghouses (such as the DTCC)

operate in this manner.

As Bitcoin enables programmatic money, it is possible to create trans-

actions without contacting a central clearinghouse. Transactions can execute

off-chain with no third party which collects all funds before disbursing it –

only transactions with uncooperative channel counterparties become auto-

matically adjudicated on the blockchain.

43



The obligation to deliver funds to an end-recipient is achieved through

a process of chained delegation. Each participant along the path assumes

the obligation to deliver to a particular recipient. Each participant passes

on this obligation to the next participant in the path. The obligation of each

subsequent participant along the path, defined in their respective HTLCs,

has a shorter time to completion compared to the prior participant. This

way each participant is sure that they will be able to claim funds when the

obligation is sent along the path.

Bitcoin Transaction Scripting, a form of what some call an implemen-

tation of “Smart Contracts”[19], enables systems without trusted custodial

clearinghouses or escrow services.

8.1 Decrementing Timelocks

Presume Alice wishes to send 0.001 BTC to Dave. She locates a route

through Bob and Carol. The transfer path would be Alice to Bob to Carol

to Dave.

Figure 15: Payment over the Lightning Network using HTLCs.

When Alice sends payment to Dave through Bob and Carol, she re-

quests from Dave hash(R) to use for this payment. Alice then counts the

amount of hops until the recipient and uses that as the HTLC expiry. In this

case, she sets the HTLC expiry at 3 days. Bob then creates an HTLC with

Carol with an expiry of 2 days, and Carol does the same with Dave with an

expiry of 1 day. Dave is now free to disclose R to Carol, and both parties will

likely agree to immediate settlement via novation with a replacement Com-

mitment Transaction. This then occurs step-by-step back to Alice. Note

that this occurs off-chain, and nothing is broadcast to the blockchain when

all parties are cooperative.

44



Figure 16: Settlement of HTLC, Alice’s funds get sent to Dave.

Decrementing timelocks are used so that all parties along the path

know that the disclosure of R will allow the disclosing party to pull funds,

since they will at worst be pulling funds after the date whereby they must

receive R. If Dave does not produce R within 1 day to Carol, then Carol will

be able to close out the HTLC. If Dave broadcasts R after 1 day, then he will

not be able to pull funds from Carol. Carol’s responsibility to Bob occurs

on day 2, so Carol will never be responsible for payment to Dave without

an ability to pull funds from Bob provided that she updates her transaction

with Dave via transmission to the blockchain or via novation.

In the event that R gets disclosed to the participants halfway through

expiry along the path (e.g. day 2), then it is possible for some parties along

the path to be enriched. The sender will be able to know R, so due to Pay

to Contract, the payment will have been fulfilled even though the receiver

did not receive the funds. Therefore, the receiver must never disclose R

unless they have received an HTLC from their channel counterparty; they

are guaranteed to receive payment from one of their channel counterparties

upon disclosure of the preimage.

In the event a party outright disconnects, the counterparty will be re-

sponsible for broadcasting the current Commitment Transaction state in the

channel to the blockchain. Only the failed non-responsive channel state gets

closed out on the blockchain, all other channels should continue to update

their Commitment Transactions via novation inside the channel. Therefore,

counterparty risk for transaction fees are only exposed to direct channel

counterparties. If a node along the path decides to become unresponsive, the

participants not directly connected to that node suffer only decreased time-

value of their funds by not conducting early settlement before the HTLC

close.

45



Figure 17: Only the non-responsive channels get broadcast on the blockchain, all others

are settled off-chain via novation.

8.2 Payment Amount

It is preferable to use a small payment per HTLC. One should not use an

extremely high payment, in case the payment does not fully route to its

destination. If the payment does not reach its destination and one of the

participants along the path is uncooperative, it is possible that the sender

must wait until the expiry before receiving a refund. Delivery may be lossy,

similar to packets on the internet, but the network cannot outright steal

funds in transit. Since transactions don’t hit the blockchain with cooperative

channel counterparties, it is recommended to use as small of a payment

as possible. A tradeoff exists between locking up transaction fees on each

hop versus the desire to use as small a transaction amount as possible (the

latter of which may incur higher total fees). Smaller transfers with more

intermediaries imply a higher percentage paid as Lightning Network fees to

the intermediaries.

8.3 Clearing Failure and Rerouting

If a transaction fails to reach its final destination, the receiver should send

an equal payment to the sender with the same hash, but not disclose R.

This will net out the disclosure of the hash for the sender, but may not for

the receiver. The receiver, who generated the hash, should discard R and

never broadcast it. If one channel along the path cannot be contacted, then

the channels may elect to wait until the path expires, which all participants

46



will likely close out the HTLC as unsettled without any payment with a new

Commitment Transaction.

Figure 18: Dave creates a path back to Alice after Alice fails to send funds to Dave,

because Carol is uncooperative. The input R from hash(R) is never brodcast by Dave,

because Carol did not complete her actions. If R was broadcast, Alice will break-even.

Dave, who controls R should never broadcast R because he may not receive funds from

Carol, he should let the contracts expire. Alice and Bob have the option to net out and

close the contract early, as well, in this diagram.

If the refund route is the same as the payment route, and there are

no half-signed contracts whereby one party may be able to steal funds, it is

possible to outright cancel the transaction by replacing it with a new Com-

mitment Transaction starting with the most recent node who participated

in the HTLC.

It is also possible to clear out a channel by creating an alternate route

path in which payment will occur in the opposite direction (netting out

to zero) and/or creating an entirely alternate route for the payment path.

This will create a time-value of money for disclosing inputs to hashes on

the Lightning Network. Participants may specialize in high connectivity

between nodes and offering to offload contract hashlocks from other nodes

for a fee. These participants will agree to payments which net out to zero

(plus fees), but are loaning bitcoins for a set time period. Most likely,

these entities with low demand for channel resources will be end-users who

are already connected to multiple well-connected nodes. When an end-user

connects to a node, the node may ask the client to lock up their funds for

several days to another channel the client has established for a fee. This

can be achieved by having the new transactions require a new hash(Y) from

input Y in addition to the existing hash which may be generated by any

participant, but must disclose Y only after a full circle is established. The

new participant has the same responsibility as well as the same timelocks

47



as the old participant being replaced. It is also possible that the one new

participant replaces multiple hops.

Figure 19: Erin is connected to both Bob and Dave. If Bob wishes to free up his channel

with Carol, since that channel is active and very profitable, Bob can offload the payment

to Dave via Erin. Since Erin has extra bitcoin available, she will be able to collect some

fee for offloading the channel between Bob and Carol as well as between Carol and Dave.

The channels between Bob and Carol as well as Carol and Dave are undone and no longer

have the HTLC, nor has payment occurred on that path. Payment will occur on the

path involving Erin. This is achieved by creating a new payment from Dave to Carol to

Bob contingent upon Erin constructing an HTLC. The payment in dashed lines (red) are

netted out to zero and settled via a new Commitment Contract.

8.4 Payment Routing

It is theoretically possible to build a route map implicitly from observing

2-of-2 multisigs on the blockchain to build a routing table. Note, however,

this is not feasible with pay-to-script-hash transaction outputs, which can

be resolved out-of-band from the bitcoin protocol via a third party routing

service. Building a routing table will become necessary for large operators

(e.g. BGP, Cjdns). Eventually, with optimizations, the network will look a

lot like the correspondent banking network, or Tier-1 ISPs. Similar to how

packets still reach their destination on your home network connection, not

all participants need to have a full routing table. The core Tier-1 routes

can be online all the time —while nodes at the edges, such as average users,

would be connected intermittently.

Node discovery can occur along the edges by pre-selecting and offering

partial routes to well-known nodes.

48



8.5 Fees

Lightning Network fees, which differ from blockchain fees, are paid directly

between participants within the channel. The fees pay for the time-value

of money for consuming the channel for a determined maximum period of

time, and for counterparty risk of non-communication.

Counterparty risk for fees only exist with one’s direct channel counter-

party. If a node two hops away decides to disconnect and their transaction

gets broadcast on the blockchain, one’s direct counterparties should not

broadcast on the blockchain, but continue to update via novation with a

new Commitment Transaction. See the Decrementing Timelocks entry in

the HTLC section for more information about counterparty risk.

The time-value of fees pays for consuming time (e.g. 3 days) and is

conceptually equivalent to a gold lease rate without custodial risk; it is the

time-value for using up the access to money for a very short duration. Since

certain paths may become very profitable in one direction, it is possible

for fees to be negative to encourage the channel to be available for those

profitable paths.

9 Risks

The primary risks relate to timelock expiration. Additionally, for core nodes

and possibly some merchants to be able to route funds, the keys must be

held online for lower latency. However, end-users and nodes are able to keep

their private keys firewalled off in cold storage.

9.1 Improper Timelocks

Participants must choose timelocks with sufficient amounts of time. If insuf-

ficient time is given, it is possible that timelocked transactions believed to

be invalid will become valid, enabling coin theft by the counterparty. There

is a trade-off between longer timelocks and the time-value of money. When

writing wallet and Lightning Network application software, it is necessary

to ensure that sufficient time is given and users are able to have their trans-

actions enter into the blockchain when interacting with non-cooperative or

malicious channel counterparties.

49



9.2 Forced Expiration Spam

Forced expiration of many transactions may be the greatest systemic risk

when using the Lightning Network. If a malicious participant creates many

channels and forces them all to expire at once, these may overwhelm block

data capacity, forcing expiration and broadcast to the blockchain. The re-

sult would be mass spam on the bitcoin network. The spam may delay

transactions to the point where other locktimed transactions become valid.

This may be mitigated by permitting one transaction replacement on

all pending transactions. Anti-spam can be used by permitting only one

transaction replacement of a higher sequence number by the inverse of an

even or odd number. For example, if an odd sequence number was broad-

cast, permit a replacement to a higher even number only once. Transactions

would use the sequence number in an orderly way to replace other trans-

actions. This mitigates the risk assuming honest miners. This attack is

extremely high risk, as incorrect broadcast of Commitment Transactions

entail a full penalty of all funds in the channel.

Additionally, one may attempt to steal HTLC transactions by forcing

a timeout transaction to go through when it should not. This can be easily

mitigated by having each transfer inside the channel be lower than the total

transaction fees used. Since transactions are extremely cheap and do not

hit the blockchain with cooperative channel counterparties, large transfers

of value can be split into many small transfers. This attempt can only work

if the blocks are completely full for a long time. While it is possible to

mitigate it using a longer HTLC timeout duration, variable block sizes may

become common, which may need mitigations.

If this type of transaction becomes the dominant form of transactions

which are included on the blockchain, it may become necessary to increase

the block size and run a variable blocksize structure and timestop flags

as described in the section below. This can create sufficient penalties and

disincentives to be highly unprofitable and unsuccessful for attackers, as

attackers lose all their funds from broadcasting the wrong transaction, to

the point where it will never occur.

50



9.3 Coin Theft via Cracking

As parties must be online and using private keys to sign, there is a possibility

that, if the computer where the private keys are stored is compromised, coins

will be stolen by the attacker. While there may be methods to mitigate

the threat for the sender and the receiver, the intermediary nodes must be

online and will likely be processing the transaction automatically. For this

reason, the intermediary nodes will be at risk and should not be holding

a substantial amount of money in this “hot wallet.” Intermediary nodes

which have better security will likely be able to out-compete others in the

long run and be able to conduct greater transaction volume due to lower

fees. Historically, one of the largest component of fees and interest in the

financial system are from various forms of counterparty risk – in Bitcoin it

is possible that the largest component in fees will be derived from security

risk premiums.

A Funding Transaction may have multiple outputs with multiple Com-

mitment Transactions, with the Funding Transaction key and some Commit-

ment Transactions keys stored offline. It is possible to create an equivalent

of a “Checking Account” and “Savings Account” by moving funds between

outputs from a Funding Transaction, with the “Savings Account” stored

offline and requiring additional signatures from security services.

9.4 Data Loss

When one party loses data, it is possible for the counterparty to steal funds.

This can be mitigated by having a third party data storage service where

encrypted data gets sent to this third party service which the party cannot

decrypt. Additionally, one should choose channel counterparties who are

responsible and willing to provide the current state, with some periodic

tests of honesty.

9.5 Forgetting to Broadcast the Transaction in Time

If one does not broadcast a transaction at the correct time, the counterparty

may steal funds. This can be mitigated by having a designated third party

to send funds. An output fee can be added to create an incentive for this

third party to watch the network. Further, this can also be mitigated by

implementing OP CHECKSEQUENCEVERIFY.

51



9.6 Inability to Make Necessary Soft-Forks

Changes are necessary to bitcoin, such as the malleability soft-fork. Addi-

tionally, if this system becomes popular, it will be necessary for the system

to securely transact with many users and some kind of structure like a

blockheight timestop will be desirable. This system assumes such changes

to enable Lightning Network to exist entirely, as well as soft-forks ensuring

the security is robust against attackers will occur. While the system may

continue to operate with only some time lock and malleability soft-forks,

there will be necessary soft-forks regarding systemic risks. Without proper

community foresight, an inability to establish a timestop or similar func-

tion will allow systemic attacks to take place and may not be recognized as

imperative until an attack actually occurs.

9.7 Colluding Miner Attacks

Miners may elect to refuse to enter in particular transactions (e.g. Breach

Remedy transactions) in order to assist in timeout coin theft. An attacker

can pay off all miners to refuse to include certain transactions in their mem-

pool and blocks. The miners can identify their own blocks in an attempt to

prove their behavior to the paying attacker.

This can be mitigated by encouraging miners to avoid identifying

their own blocks. Further, it should be expected that this kind of payment

to miners is malicious activity and the contract is unenforcible. Miners may

then take payment and surreptitiously mine a block without identifying the

block to the attacker. Since the attacker is paying for this, they will quickly

run out of money by losing the fee to the miner, as well as losing all their

money in the channel. This attack is unlikely and fairly unattractive as it

is far too difficult and requires a high degree of collusion with extreme risk.

The risk model of this attack occurirng is similar to that of miners

colluding to do reorg attacks: Extremely unlikely with many uncoordinated

miners.

10 Block Size Increases and Consensus

If we presume that a decentralized payment network exists and one user will

make 3 blockchain transactions per year on average, Bitcoin will be able

52



to support over 35 million users with 1MB blocks in ideal circumstances

(assuming 2000 transactions/MB, or 500 bytes/Tx). This is quite limited,

and an increase of the block size may be necessary to support everyone in

the world using Bitcoin. A simple increase of the block size would be a hard

fork, meaning all nodes will need to update their wallets if they wish to

participate in the network with the larger blocks.

While it may appear as though this system will mitigate the block size

increases in the short term, if it achieves global scale, it will necessitate a

block size increase in the long term. Creating a credible tool to help prevent

blockchain spam designed to encourage transactions to timeout becomes

imperative.

To mitigate timelock spam vulnerabilities, non-miner and miners’ con-

sensus rules may also differ if the miners’ consensus rules are more restrictive.

Non-miners may accept blocks over 1MB, while miners may have different

soft-caps on block sizes. If a block size is above that cap, then that is viewed

as an invalid block by other miners, but not by non-miners. The miners will

only build the chain on blocks which are valid according to the agreed-upon

soft-cap. This permits miners to agree on raising the block size limit with-

out requiring frequent hard-forks from clients, so long as the amount raised

by miners does not go over the clients’ hard limit. This mitigates the risk

of mass expiry of transactions at once. All transactions which are not re-

deemed via Exercise Settlement (ES) may have a very high fee attached, and

miners may use a consensus rule whereby those transactions are exempted

from the soft-cap, making it very likely the correct transactions will enter

the blockchain.

When transactions are viewed as circuits and contracts instead of

transaction packets, the consensus risks can be measured by the amount of

time available to cover the UTXO set controlled by hostile parties. In effect,

the upper bound of the UTXO size is determined by transaction fees and

the standard minimum transaction output value. If the bitcoin miners have

a deterministic mempool which prioritizes transactions respecting a “weak”

local time order of transactions, it could become extremely unprofitable and

unlikely for an attack to succeed. Any transaction spam time attack by

broadcasting the incorrect Commitment Transaction is extremely high risk

for the attacker, as it requires an immense amount of bitcoin and all funds

committed in those transactions will be lost if the attacker fails.

53



11 Use Cases

In addition to helping bitcoin scale, there are many uses for transactions on

the Lightning Network:

• Instant Transactions. Using Lightning, Bitcoin transactions are now

nearly instant with any party. It is possible to pay for a cup of coffee

with direct non-revocable payment in milliseconds to seconds.

• Exchange Arbitrage. There is presently incentive to hold funds on

exchanges to be ready for large market moves due to 3-6 block con-

firmation times. It is possible for the exchange to participate in this

network and for clients to move their funds on and off the exchange

for orders nearly instantly. If the exchange does not have deep market

depth and commits to only permitting limit orders close to the top of

the order book, then the risk of coin theft becomes much lower. The

exchange, in effect, would no longer have any need for a cold storage

wallet. This may substantially reduce thefts and the need for trusted

third party custodians.

• Micropayments. Bitcoin blockchain fees are far too high to accept

micropayments, especially with the smallest of values. With this sys-

tem, near-instant micropayments using Bitcoin without a 3rd party

custodian would be possible. It would enable, for example, paying

per-megabyte for internet service or per-article to read a newspaper.

• Financial Smart Contracts and Escrow. Financial contracts are espe-

cially time-sensitive and have higher demands on blockchain computa-

tion. By moving the overwhelming majority of trustless transactions

off-chain, it is possible to have highly complex transaction contract

terms without ever hitting the blockchain.

12 Conclusion

Creating a network of micropayment channels enables bitcoin scalability,

micropayments down to the satoshi, and near-instant transactions. These

channels represent real Bitcoin transactions, using the Bitcoin scripting op-

54



codes to enable the transfer of funds without risk of counterparty theft,

especially with long-term miner risk mitigations.

If all transactions using Bitcoin were on the blockchain, to enable

7 billion people to make two transactions per day, it would require 24GB

blocks every ten minutes at best (presuming 250 bytes per transaction and

144 blocks per day). Conducting all global payment transactions on the

blockchain today implies miners will need to do an incredible amount of

computation, severely limiting bitcoin scalability and full nodes to a few

centralized processors.

If all transactions using Bitcoin were conducted inside a network of

micropayment channels, to enable 7 billion people to make two channels

per year with unlimited transactions inside the channel, it would require

133 MB blocks (presuming 500 bytes per transaction and 52560 blocks per

year). Current generation desktop computers will be able to run a full node

with old blocks pruned out on 2TB of storage.

With a network of instantly confirmed micropayment channels whose

payments are encumbered by timelocks and hashlock outputs, Bitcoin can

scale to billions of users without custodial risk or blockchain centralization

when transactions are conducted securely off-chain using bitcoin scripting,

with enforcement of non-cooperation by broadcasting signed multisignature

transactions on the blockchain.

13 Acknowledgements

Micropayment channels have been developed by many parties, and has been

discussed on bitcointalk, the bitcoin mailing list, and IRC. The amount of

contributors to this idea are immense and much thought have been put into

this ability. Effort has been placed into citing and finding similar ideas,

however it is absolutely not near complete. In particular, there are many

similarities to a proposal by Alex Akselrod by using hashlocking as a method

of encumbering a hub-and-spoke payment channel.

Thanks to Peter Todd for correcting a significant error in the HTLC

script, as well as optimizing the opcode size.

Thanks to Elizabeth Stark for reviewing and corrections.

Thanks to Rusty Russell for reviewing this document and suggestions

for making the concept more digestible, as well as working on a construction

55



which may provide a stop-gap solution before a long-term malleability fix

(to be described in a future version).

Appendix A Resolving Malleability

In order to create these contracts in Bitcoin without a third party trusted

service, Bitcoin must fix the transaction malleability problem. If transac-

tions can be mutated, then signatures can be invalidated, thereby making

refund transactions and commitment bonds invalidated. This creates an

opportunity for hostile actors to use it as an opportunity for a negotiating

tactic to steal coins, in effect, a hostage scenario.

To mitigate malleability, it is necessary to make a soft-fork change to

bitcoin. Older clients would still work, but miners would need to update.

Bitcoin has had several soft forks in the past, including pay-to-script-hash

(P2SH).

To mitigate malleability, it requires changing which contents are

signed by the participants. This is achieved by creating new sighash types.

In order to accommodate this new behavior, a new P2SH type or new

OP CHECKSIG is necessary to make it a soft-fork rather than a hard-fork.

If a new P2SH was defined, it would use a different output script

such as:

OP DUP OP HASH160 <20-byte hash> OP EQUALVERIFY

Since this will always resolve to true provided a valid redeemScript,

all existing clients will return true. This allows the scripting system to

construct new rules, including new signature validation rules. At least one

new sighash would need to exist.

SIGHASH NOINPUT would neither sign any input transactions IDs

nor sign the index. By using SIGHASH NOINPUT, one can be assured that

one’s counterparty cannot invalidate entire trees of chained transactions of

potential contract states which were previously agreed upon, using transac-

tion ID mutation. With the new sighash flags, it is possible to spend from

a parent transaction even though the transaction ID has changed, so long

as the script evaluates as true (i.e. a valid signature).

56



SIGHASH NOINPUT implies significant risk with address reuse, as

it can work with any transaction in which the sigScript returns as valid, so

multiple transactions with the same outputs are redeemable (provided the

output values are less).

Further, and just as importantly, SIGHASH NOINPUT permits par-

ticipants to sign spends of transactions without knowing the signatures of

the transaction being spent. By solving malleability in the above manner,

two parties may build contracts and spend transactions without either party

having the ability to broadcast that original transaction on the blockchain

until both parties agree. With the new sighash type, participants may build

potential contract states and potential payout conditions and agree upon

all terms, before the contract may be paid, broadcast, and executed upon

without the need for a trusted third party.

Without SIGHASH NOINPUT, one cannot build outputs before the

transaction can be funded. It is as if one cannot make any agreements

without committing funds without knowing what one is committing to.

SIGHASH NOINPUT allows one to build redemption for transactions which

do not yet exist. In other words, one can form agreements before funding

the transaction if the output is a 2-of-2 multisignature transaction.

To use SIGHASH NOINPUT, one builds a Funding Transaction,

and does not yet sign it. This Funding Transaction does not need to use

SIGHASH NOINPUT if it is spending from a transaction which has already

been entered into the blockchain. To spend from a Funding Transaction

with a 2-of-2 multisignature output which has not yet been signed and

broadcast, however, requires using SIGHASH NOINPUT.

A further stop-gap solution using OP CHECKSEQUENCEVERIFY

or a less-optimal use of OP CHECKLOCKTIMEVERIFY will be described

in a future paper by Rusty Russell. An updated version of this paper will

also include these constructions.

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-peer Electronic Cash System.

https://bitcoin.org/bitcoin.pdf, Oct 2008.

57

https://bitcoin.org/bitcoin.pdf


[2] Manny Trillo. Stress Test Prepares VisaNet for

the Most Wonderful Time of the Year. http:

//www.visa.com/blogarchives/us/2013/10/10/

stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/

index.html, Oct 2013.

[3] Bitcoin Wiki. Contracts: Example 7: Rapidly-adjusted (mi-

cro)payments to a pre-determined party. https://en.bitcoin.

it/wiki/Contracts#Example_7:_Rapidly-adjusted_.28micro.

29payments_to_a_pre-determined_party.

[4] bitcoinj. Working with micropayment channels. https://bitcoinj.

github.io/working-with-micropayments.

[5] Leslie Lamport. The Part-Time Parliament. ACM Transactions on

Computer Systems, 21(2):133–169, May 1998.

[6] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Dis-

tributed System. Communications of the ACM, 21(7):558–565, Jul

1978.

[7] Alex Akselrod. Draft. https://en.bitcoin.it/wiki/User:

Aakselrod/Draft, Mar 2013.

[8] Alex Akselrod. ESCHATON. https://gist.github.com/aakselrod/

9964667, Apr 2014.

[9] Peter Todd. Near-zero fee transactions with hub-and-spoke micro-

payments. http://sourceforge.net/p/bitcoin/mailman/message/

33144746/, Dec 2014.

[10] C.J. Plooy. Combining Bitcoin and the Ripple to create a

fast, scalable, decentralized, anonymous, low-trust payment net-

work. http://www.ultimatestunts.nl/bitcoin/ripple_bitcoin_

draft_2.pdf, Jan 2013.

[11] BitPay. Impulse. http://impulse.is/impulse.pdf, Jan 2015.

[12] Mark Friedenbach. BIP 0068: Consensus-enforced transac-

tion replacement signaled via sequence numbers (relative lock-

58

http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://en.bitcoin.it/wiki/Contracts#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contracts#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contracts#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://bitcoinj.github.io/working-with-micropayments
https://bitcoinj.github.io/working-with-micropayments
https://en.bitcoin.it/wiki/User:Aakselrod/Draft
https://en.bitcoin.it/wiki/User:Aakselrod/Draft
https://gist.github.com/aakselrod/9964667
https://gist.github.com/aakselrod/9964667
http://sourceforge.net/p/bitcoin/mailman/message/33144746/
http://sourceforge.net/p/bitcoin/mailman/message/33144746/
http://www.ultimatestunts.nl/bitcoin/ripple_bitcoin_draft_2.pdf
http://www.ultimatestunts.nl/bitcoin/ripple_bitcoin_draft_2.pdf
http://impulse.is/impulse.pdf


time). https://github.com/bitcoin/bips/blob/master/bip-0068.

mediawiki, May 2015.

[13] Mark Friedenbach BtcDrak and Eric Lombrozo. BIP 0112: CHECK-

SEQUENCEVERIFY. https://github.com/bitcoin/bips/blob/

master/bip-0112.mediawiki, Aug 2015.

[14] Jonas Schnelli. What does OP CHECKSEQUENCEVERIFY do?

http://bitcoin.stackexchange.com/a/38846, Jul 2015.

[15] Greg Maxwell (nullc). reddit. https://www.reddit.com/r/Bitcoin/

comments/37fxqd/it_looks_like_blockstream_is_working_on_

the/crmr5p2, May 2015.

[16] Gavin Andresen. BIP 0016: Pay to Script Hash. https://github.

com/bitcoin/bips/blob/master/bip-0016.mediawiki, Jan 2012.

[17] Pieter Wuille. BIP 0032: Hierarchical Deterministic Wallets. https://

github.com/bitcoin/bips/blob/master/bip-0032.mediawiki, Feb

2012.

[18] Ilja Gerhardt and Timo Hanke. Homomorphic Payment Addresses and

the Pay-to-Contract Protocol. http://arxiv.org/abs/1212.3257,

Dec 2012.

[19] Nick Szabo. Formalizing and Securing Relationships on Public Net-

works. http://szabo.best.vwh.net/formalize.html, Sep 1997.

59

https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
http://bitcoin.stackexchange.com/a/38846
https://www.reddit.com/r/Bitcoin/comments/37fxqd/it_looks_like_blockstream_is_working_on_the/crmr5p2
https://www.reddit.com/r/Bitcoin/comments/37fxqd/it_looks_like_blockstream_is_working_on_the/crmr5p2
https://www.reddit.com/r/Bitcoin/comments/37fxqd/it_looks_like_blockstream_is_working_on_the/crmr5p2
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
http://arxiv.org/abs/1212.3257
http://szabo.best.vwh.net/formalize.html

	The Bitcoin Blockchain Scalability Problem
	A Network of Micropayment Channels Can Solve Scalability
	Micropayment Channels Do Not Require Trust
	A Network of Channels

	Bidirectional Payment Channels
	The Problem of Blame in Channel Creation
	Creating an Unsigned Funding Transaction
	Spending from an Unsigned Transaction
	Commitment Transactions: Unenforcible Construction
	Commitment Transactions: Ascribing Blame

	Creating a Channel with Contract Revocation
	Sequence Number Maturity
	Timestop
	Revocable Commitment Transactions
	Redeeming Funds from the Channel: Cooperative Counterparties
	Creating a new Commitment Transaction and Revoking Prior Commitments
	Process for Creating Revocable Commitment Transactions

	Cooperatively Closing Out a Channel
	Bidirectional Channel Implications and Summary

	Hashed Timelock Contract (HTLC)
	Non-revocable HTLC Construction
	Off-chain Revocable HTLC
	HTLC when the Sender Broadcasts the Commitment Transaction
	HTLC when the Receiver Broadcasts the Commitment Transaction

	HTLC Off-chain Termination
	HTLC Formation and Closing Order

	Key Storage
	Blockchain Transaction Fees for Bidirectional Channels
	Pay to Contract
	The Bitcoin Lightning Network
	Decrementing Timelocks
	Payment Amount
	Clearing Failure and Rerouting
	Payment Routing
	Fees

	Risks
	Improper Timelocks
	Forced Expiration Spam
	Coin Theft via Cracking
	Data Loss
	Forgetting to Broadcast the Transaction in Time
	Inability to Make Necessary Soft-Forks
	Colluding Miner Attacks

	Block Size Increases and Consensus
	Use Cases
	Conclusion
	Acknowledgements
	Resolving Malleability

